Data and Signals

Ahmad Zainudin, S.ST, M.T
http://zai.lecturer.eepis-its.edu
Data Communications
2015

To be transmitted, data must be transformed to electromagnetic signals.

ANALOG AND DIGITAL

- Data can be analog or digital. The term analog data refers to information that is continuous; digital data refers to information that has discrete states. Analog data take on continuous values. Digital data take on discrete values.
- Topics discussed in this section:
- Analog and Digital Data
- Analog and Digital Signals
- Periodic and Nonperiodic Signals

Comparison of analog and digital signals

a. Analog signal

b. Digital signal

PERIODIC ANALOG SIGNALS

- In data communications, we commonly use periodic analog signals and non-periodic digital signals. Periodic analog signals can be classified as simple or composite. A simple periodic analog signal, a sine wave, cannot be decomposed into simpler signals. A composite periodic analog signal is composed of multiple sine waves.
- Topics discussed in this section:
- Sine Wave
- Wavelength
- Time and Frequency Domain
- Composite Signals
- Bandwidth

A sine wave

Two signals with the same phase and frequency, but different amplitudes

a. A signal with high peak amplitude

b. A signal with low peak amplitude

Frequency and period are the inverse of each other.

$$
f=\frac{\mathbf{1}}{T} \quad \text { and } \quad T=\frac{1}{f}
$$

Two signals with the same amplitude and phase, but different frequencies

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

Units of period and frequency

Unit	Equivalent	Unit	Equivalent
Seconds (s)	1 s	Hertz (Hz)	1 Hz
Milliseconds (ms)	$10^{-3} \mathrm{~s}$	Kilohertz (kHz)	$10^{3} \mathrm{~Hz}$
Microseconds $(\mu \mathrm{s})$	$10^{-6} \mathrm{~s}$	Megahertz (MHz)	$10^{6} \mathrm{~Hz}$
Nanoseconds (ns)	$10^{-9} \mathrm{~s}$	Gigahertz (GHz)	$10^{9} \mathrm{~Hz}$
Picoseconds (ps)	$10^{-12} \mathrm{~s}$	Terahertz (THz)	$10^{12} \mathrm{~Hz}$

Example

- The power we use at home has a frequency of 60 Hz . The period of this sine wave can be determined as follows:

$$
T=\frac{1}{f}=\frac{1}{60}=0.0166 \mathrm{~s}=0.0166 \times 10^{3} \mathrm{~ms}=16.6 \mathrm{~ms}
$$

Example

- The period of a signal is 100 ms . What is its frequency in kilohertz?

Solution

- First we change 100 ms to seconds, and then we calculate the frequency from the period ($1 \mathrm{~Hz}=10-3 \mathrm{kHz}$).

$$
\begin{gathered}
100 \mathrm{~ms}=100 \times 10^{-3} \mathrm{~s}=10^{-1} \mathrm{~s} \\
f=\frac{1}{T}=\frac{1}{10^{-1}} \mathrm{~Hz}=10 \mathrm{~Hz}=10 \times 10^{-3} \mathrm{kHz}=10^{-2} \mathrm{kHz}
\end{gathered}
$$

Frequency

- Frequency is the rate of change with respect to time.
- Change in a short span of time means high frequency.
- Change over a long span of time means low frequency

Phase describes the position of the waveform relative to time 0 .

Three sine waves with the same amplitude and frequency, but different phases

a. 0 degrees

b. 90 degrees

Wavelength and period

The time-domain and frequency-domain plots of a sine wave

a. A sine wave in the time domain (peak value: 5 V , frequency: 6 Hz)

b. The same sine wave in the frequency domain (peak value: 5 V , frequency: 6 Hz)

The time domain and frequency domain of three sine waves

a. Time-domain representation of three sine waves with frequencies 0,8 , and 16

b. Frequency-domain representation of the same three signals

Signals and Communication

- A single-frequency sine wave is not useful in data communications
- We need to send a composite signal, a signal made of many simple sine waves.
- According to Fourier analysis, any composite signal is a combination of simple sine waves with different frequencies, amplitudes, and phases.

A composite periodic signal

Decomposition of a composite periodic signal in the time and frequency domains

a. Time-domain decomposition of a composite signal

b. Frequency-domain decomposition of the composite signal

Bandwidth and Signal Frequency

- The bandwidth of a composite signal is the difference between the highest and the lowest frequencies contained in that signal.

Example

- If a periodic signal is decomposed into five sine waves with frequencies of $100,300,500,700$, and 900 Hz , what is its bandwidth? Draw the spectrum, assuming all components have a maximum amplitude of 10 V . Solution
- Let f-h be the highest frequency, fl the lowest frequency, and B the bandwidth. Then

$$
B=f_{h}-f_{l}=900-100=800 \mathrm{~Hz}
$$

- The spectrum has only five spikes, at $100,300,500,700$, and 900 Hz

The bandwidth for Example

