

Data and Signals

Ahmad Zainudin, S.ST, M.T

http://zai.lecturer.eepis-its.edu Data Communications 2015

Note

To be transmitted, data must be transformed to electromagnetic signals.

ANALOG AND DIGITAL

 Data can be analog or digital. The term analog data refers to information that is continuous; digital data refers to information that has discrete states. Analog data take on continuous values. Digital data take on discrete values.

Topics discussed in this section:

- Analog and Digital Data
- Analog and Digital Signals
- Periodic and Nonperiodic Signals

Comparison of analog and digital signals

PERIODIC ANALOG SIGNALS

 In data communications, we commonly use periodic analog signals and non-periodic digital signals. Periodic analog signals can be classified as simple or composite. A simple periodic analog signal, a sine wave, cannot be decomposed into simpler signals. A composite periodic analog signal is composed of multiple sine waves.

Topics discussed in this section:

- Sine Wave
- Wavelength
- Time and Frequency Domain
- Composite Signals
- Bandwidth

A sine wave

Two signals with the same phase and frequency, but different amplitudes

a. A signal with high peak amplitude

b. A signal with low peak amplitude

Note

Frequency and period are the inverse of each other.

$$f = \frac{1}{T}$$
 and $T = \frac{1}{f}$

Two signals with the same amplitude and phase, but different frequencies

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

Units of period and frequency

Unit	Equivalent	Unit	Equivalent
Seconds (s)	1 s	Hertz (Hz)	1 Hz
Milliseconds (ms)	10 ⁻³ s	Kilohertz (kHz)	10^3 Hz
Microseconds (µs)	10 ⁻⁶ s	Megahertz (MHz)	10 ⁶ Hz
Nanoseconds (ns)	10 ⁻⁹ s	Gigahertz (GHz)	10 ⁹ Hz
Picoseconds (ps)	10^{-12} s	Terahertz (THz)	10 ¹² Hz

Example

• The power we use at home has a frequency of 60 Hz. The period of this sine wave can be determined as follows:

$$T = \frac{1}{f} = \frac{1}{60} = 0.0166 \text{ s} = 0.0166 \times 10^3 \text{ ms} = 16.6 \text{ ms}$$

Example

The period of a signal is 100 ms. What is its frequency in kilohertz?

Solution

■ First we change 100 ms to seconds, and then we calculate the frequency from the period (1 Hz = 10−3 kHz).

$$100 \text{ ms} = 100 \times 10^{-3} \text{ s} = 10^{-1} \text{ s}$$

 $f = \frac{1}{T} = \frac{1}{10^{-1}} \text{ Hz} = 10 \text{ Hz} = 10 \times 10^{-3} \text{ kHz} = 10^{-2} \text{ kHz}$

Frequency

- Frequency is the rate of change with respect to time.
- Change in a short span of time means high frequency.
- Change over a long span of time means low frequency

Phase describes the position of the waveform relative to time 0.

Three sine waves with the same amplitude and frequency, but different phases

Wavelength and period

The time-domain and frequency-domain plots of a sine wave

a. A sine wave in the time domain (peak value: 5 V, frequency: 6 Hz)

b. The same sine wave in the frequency domain (peak value: 5 V, frequency: 6 Hz)

The time domain and frequency domain of three sine waves

frequencies 0, 8, and 16

b. Frequency-domain representation of the same three signals

Signals and Communication

- A single-frequency sine wave is not useful in data communications
- We need to send a composite signal, a signal made of many simple sine waves.
- According to Fourier analysis, any composite signal is a combination of simple sine waves with different frequencies, amplitudes, and phases.

A composite periodic signal

Decomposition of a composite periodic signal in the time and frequency domains

a. Time-domain decomposition of a composite signal

b. Frequency-domain decomposition of the composite signal

Bandwidth and Signal Frequency

 The bandwidth of a composite signal is the difference between the highest and the lowest frequencies contained in that signal.

Example

- If a periodic signal is decomposed into five sine waves with frequencies of 100, 300, 500, 700, and 900 Hz, what is its bandwidth? Draw the spectrum, assuming all components have a maximum amplitude of 10 V.
 Solution
- Let f-h be the highest frequency, fl the lowest frequency, and B the bandwidth. Then

$$B = f_h - f_l = 900 - 100 = 800 \text{ Hz}$$

• The spectrum has only five spikes, at 100, 300, 500, 700, and 900 Hz

The bandwidth for Example

